SYNTHESIS AND SPECTRA OF SOME OCTA-O-BENZOYLALDO-BIONONITRILES

NORMA B. D'ACCORSO, BEATRIZ N. ZUAZO AND INGE M. E. THIEL*

Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pabellon II, 1428 Buenos Aires (Argentina)

(Received August 6th, 1986; accepted for publication, 14th January 1987)

ABSTRACT

2,3,5,6,2',3',4',6'-Octa-O-benzoyl-cellobiononitrile, -lactobiononitrile, -maltobiononitrile, and 2,3,4,5,2',3',4',6'-octa-O-benzoyl-melibiononitrile were prepared by benzoylation and dehydration of the corresponding disaccharide oximes, and their ¹H- and ¹³C-n.m.r., and e.i.m.s. spectra are described.

INTRODUCTION

The synthesis of aldobiononitriles has been so far limited to the acetylated derivatives, and several octa-O-acetylaldobiononitriles are known¹⁻⁷. We describe herein the synthesis of some octa-O-benzoylaldobiononitriles having (1 \rightarrow 4)- and (1 \rightarrow 6)-glycosidic linkages.

RESULTS AND DISCUSSION

2,3,5,6,2',3',4'6'-Octa-O-benzoyl-cellobiononitrile (1) was prepared, in 78% yield from cellobiose oxime, by benzoylation with benzoyl chloride-pyridine. 2,3,5,6,2',3',4',6'-Octa-O-benzoyllactobiononitrile (2) (87%), -octa-O-benzoyl-maltobiononitrile (3) (72%), and 2,3,4,5,2',3',4',6'-octa-O-benzoylmelibiononitrile (4) (87%) were prepared in a similar way. Control of the reaction temperature (90°) was even more important than in the case of analogous monosaccharide derivatives⁸.

Analysis of the ¹H-n.m.r. spectra. — The ¹H-n.m.r. spectra of 1, 2, and 3 were measured at 400 MHz, and of 4 at 270 MHz, and allowed first-order analysis. The assignments were ascertained, in all cases, by double-resonance experiments (see Table I and Table II). The spectrum of 3 in CDCl₃ solution allowed assignment of all 13 H atoms of the carbohydrate chain. Comparison with the spectrum of the same compound in C_6D_6 solution showed a general downfield shift of the signals. The signal of the most deshielded proton in CDCl₃ solution, H-3', disappeared for a C_6D_6 solution, and we suppose that it appeared with the signals of the aromatic

^{*}To whom correspondence should be addressed.

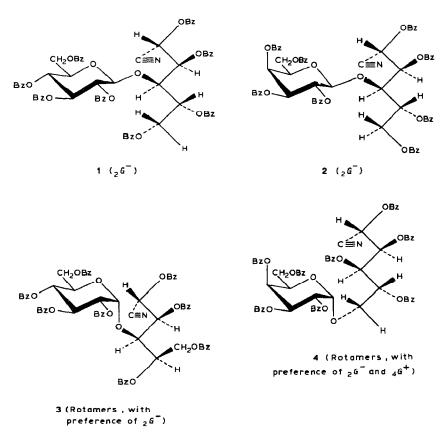
TABLE I $^{\mathrm{I}}$ H-n.m.r. chemical shifts (δ) and multiplicities of compounds 1–4

Atom	14	2 ^b	3 ^b	3ª	4 c
H-2	6.31 d	d	6.48 d	6.16 d	6.02 d
H-3	6.07 dd	6.56 dd	6.43 dd	6.10 dd	6.26 dd
H-4	4.91 dd	5.23 dd	5.05 t	4.90 t	d
H-5	5.48 ddd	6.01 ddd	6.21 ddd	5.98 ddd	5.96 dt
H-6a	4.68 dd	4.86 dd	4.97 dd	4.98 dd	4.04 dd
H-6b	4.42 dd	4.77 dd	4.91 dd	4.90 dd	3.63 dd
H-1'	5.27 d	5.18 d	5.83 d	5.78 d	5.46 d
H-2'	5.79 dd	6.50 dd	5.74 dd	5.55 dđ	6.17 dd
H-3'	5.93 t	5.85 dd	ď	6.27 t	6.49 dd
H-4'	5.85 t	6.27 dd	6.08 t	5.74 t	6.28
H-5'	4.24 dt	4.00 ddd	5.07 ddd	4.75 ddd	4.38 ddd
H-6'a	4.87 dd	5.13 dd	4.71 dd	4.36 đd	4.61 dd
H-6'b	4.70 dd	4.65 dd	4.52 dd	4.17 dd	4.18 dd
H-arom.	7.1-8.1	6.7-8.4	6.7-8.4	7.1-8.1	6.7-8.4

"Measured at 400 MHz for a solution in $CDCl_3$ with Me_4Si as internal standard. ^bMeasured at 400 MHz for a solution in C_6D_6 with Me_4Si as internal standard. ^cMeasured at 270 MHz for a solution in C_6D_6 with Me_4Si as internal standard. ^dPossible assignment superposed with the signals for aromatic protons.

protons. A similar situation was obtained for H-3' in the spectrum of a C_6D_6 solution of 1,2,6,2',3',4',6'-hepta-O-benzoyl- β -maltose⁹. In the aldobiononitriles having a β -D-(1 \rightarrow 4) linkage (1 and 2), H-2 is the most deshielded proton. In the spectrum of 1 in CDCl₃ solution, the signals of all the protons appeared well separated from those of the aromatic signals, but in the spectrum of 2 in C_6D_6 solution, the signal

TABLE II


VICINAL PROTON-PROTON COUPLING CONSTANTS (Hz) OF COMPOUNDS 1-4

Coupling co	nstant 1ª	2 ^b	3 ^b	3ª	4b
J _{2,3}	9.5	9.3	7.4	6.8	6.4
J _{3,4}	1.6	1.6	3.9	4.2	2.4
14,5	8.0	7.2	4.1	4.2	8.0
7,5 5,6a	3.0	3.2	4.2	4.2	3.3
5,6b	4.6	6.0	6.7	6.8	2.5
6a,6b	12.4	12.2	12.2	12.3	11.4
7 _{1',2'}	7.9	7.9	3.6	3.7	3.5
7 2',3'	9.6	10.4	10.2	10.1	10.8
7 _{3',4'}	9.6	3.4	9.8	9.9	3.4
4',5'	9.8	1.0	10.0	9.9	1.2
5',6'a	3.0	6.0	3.0	2.8	6.7
5',6'b	3.6	7.0	4.4	4.3	6.4
6'a,6'b	12.6	11.6	12.4	12.4	11.2

^aMeasured for a CDCl₃ solution. ^bMeasured for a C₆D₆ solution.

of H-2 was not visible and we supposed that it was shifted to the signals of the aromatic protons. The spectrum of 4 in C_6D_6 solution did not show the signal for H-4 and we suppose that it was shifted to the aromatic part of the spectrum. The signal for H-4 in 2,3,4,5,6-penta-O-benzoyl-D-glucononitrile in CDCl₃ solution showed that this was the most deshielded proton¹⁰ (δ 6.64), and this observation can be extended to 4, which has an α -D-(1 \rightarrow 6) linkage.

The conformations of 1-4 may be deduced from the ¹H-n.m.r. data. The cyclic part is present in the ${}^4C_1(D)$ conformation in 1 and 3, and shows a slight deformation for 2 and 4 which have the axial benzoyloxy-4' group. The acyclic part showed a deviation from the planar, extended, zig-zag conformation. The deviation may be explained as a rotamer or as the average between some of the conformations. In 1 $(J_{2,3} 9.5 \text{ Hz})$ and 2 $(J_{2,3} 9.3 \text{ Hz})$, H-2 and H-3 are in the anti-periplanar relationship, which corresponds to a C-2 \rightarrow C-3 rotation¹¹ ($_2G^-$). In these compounds, the bulky glycosyl group having the β -D-linkage at C-4 is predominant and only one rotamer is present (see Scheme 1). In 2,3,4,5,6-penta-O-benzoyl-Dglucononitrile, the $J_{2,3}$ 6.6 Hz value corresponds to an average between two rotamers, with an important contribution of ${}_{2}G^{-}$. We observed the same average for 4 $(J_{2,3} 6.4 \text{ Hz})$ which has the α -D- $(1\rightarrow 6)$ linkage. In 3, the α -D- $(1\rightarrow 4)$ linkage (J_{2,3} 7.4 Hz for a C₆D₆ and 6.8 Hz for a CDCl₃ solution) gave rise to the preponderance of the ${}_{2}G^{-}$ rotamer, but a ${}_{4}G^{+}$ rotation was also present $(J_{4,5}, 4.1)$ Hz), which is attributed to the bulky α -D-glycosidic substituent at C-4. In both possible rotamers at $C-4\rightarrow C-5$, a 1,3-parallel interaction appeared between the two benzoyloxy groups (at C-3 and C-5) or with a benzoyloxy group and C-6. We supposed that the last interaction was the less hindered and we report the rotation as ${}_{4}G^{+}$.

Scheme 1. Preferred conformations in solution.

Assignments of the ¹³C-n.m.r. spectra. — The assignments of the ¹³C-n.m.r. spectra were performed by a comparison with model compounds. This is only valid if the compounds have the same conformation and configuration, as reported for benzoylated cyclic monosaccharide and disaccharide derivatives ¹²⁻¹⁴, and benzoylated acyclic derivatives ^{15,16}. The compounds used for the assignments of the ¹³C-n.m.r. signals of octa-O-benzoyl-cellobiononitrile (1) were 2,3,4,5,6-penta-O-benzoyl-D-glucononitrile and 1,2,3,4,6-penta-O-benzoyl- β -D-glucopyranose and in the reference compound gave important changes in the ¹³C-n.m.r. chemical shifts for C-2 (Δ 1.96 p.p.m.) and C-3 (Δ 0.86 p.p.m.). On the other hand, the different substituent at C-4, the β -D-glycosyl group in 1 and the benzoyl group in the reference compound, gave rise to a strong difference for C-4 of 8.45 p.p.m., as expected for these types of change ¹³. This is also reflected by similar modifications on the neighboring carbon atoms ¹⁷. The cyclic part allowed a good correlation with 1,2,3,4,6-penta-O-benzoyl- β -D-glucopyranose. Considering the change in the

TABLE III	
$^{13}\text{C-N.M.R.}$ CHEMICAL SHIFTS (δ) FOR COMPOUNDS 1-4	

Atom	14	1 ^b	2 ^b	3 c	4 ^d
C≈N	114.70	115.79	115.60	114.70	114.11
C-2	61.70	62.63	62.25	61.84	59.70
C-3	69.18	69.97	69.86	70.98	67.19
C-4	76.77	76.34	75.60	76.24	68.31
C-5	69.60	70.52	70.27	72.13	68.31
C-6	61.99	62.67	62.92	61.90	66.56
C-1'	101.32	101.95	101.84	99.19	97.20
C-2'	72.04	72.76	70.75	71.93	67.85
C-3'	73.19	73.73	72.37	70.85	68.94
C-4'	69.02	69.55	68.65	69.95	68.94
C-5'	72.92	73.43	72.03	70.05	69.73
C-6'	62.09	62.77	61.95	62.99	62.28
C-arom.	128.21-133.83		-126.52-133.73-		127.25-133.88
C=0	164.07–166.13	←164.20-166.05→ 163.90-165.75			

^aMeasured at 100.63 MHz for a solution in CDCl₃ with Me₄Si as internal standard. ^bMeasured at 15.08 MHz for a solution in C_6D_6 with Me₄Si as internal standard. ^cMeasured at 100.63 MHz for a solution in C_6D_6 with Me₄Si as internal standard. ^dMeasured at 20.15 MHz for a solution in CDCl₃ with Me₄Si as internal standard.

substituent at C-1', the acyclic part instead of the benzoyl group, we observed main shifts for the signals of C-1' (Δ 8.54 p.p.m.) and of the vicinal C-2'.

Our assignments for the 13 C-n.m.r. signals (Table III) of 1 were compared with those reported by Sziláglyi 18 for octa-O-acetylcellobiononitrile by a two-dimensional technique, taking into consideration the difference in the acyl group. For the assignments of the signals of 2-4, a similar analysis was applied, which used as reference compounds 1,2,3,4,6-penta-O-benzoyl- α -D-glucopyranose 12 , 1,2,3,4,6-penta-O-benzoyl- α -D-galactopyranose 12 , 2,3,4,5,6-penta-O-benzoyl-D-glucononitrile 16 , and methyl 2,3,4-tri-O-benzoyl-6-O-(2,3,4,6-tetra-O-benzoyl- β -D-galactopyranoside 19 . That not all the spectra were measured for solutions in the same solvent had to be considered. The assignments of the signals for 3 were performed with the consideration that the acyclic part shows two rotameric changes, at C-2 \rightarrow C-3 and C-4 \rightarrow C-5, and this does not allow a direct comparison.

The data in Table III indicate that the correlation of the signals of 1 and 2 in C_6D_6 solution shows a good agreement for the acyclic part, with the highest difference for C-4 (Δ 0.74 p.p.m.). Both compounds have the same conformation and configuration in this part of the molecule. In the cyclic part, several differences were observed, which are due to the configurational inversion at C-4'. The same analyses for 1 and 3 showed the expected change in the cyclic part due to the anomeric inversion from β - to α -D (Δ C-1' 2.76, Δ C-3' 2.88, and Δ C-5 3.38 p.p.m.), as we reported for other benzoylated derivatives^{12,13}. For the acyclic part, this comparison was not useful as a different conformation is present in solution.

TABLE IV
MAJOR FRAGMENTATION RESULTING FROM ELECTRON-IMPACT IONIZATION OF COMPOUNDS $1-4^\circ$

m/z	1 Int. (%)	2 Int. (%)	3 Int. (%)	4 Int. (%)	Assignments ^b
579		1.4		0.4	C+
331	1.0	4.0	1.7	0.7	(PhCO) ₃ O+
294°	0.4	1.3	0.9		A†
269°	0.6	1.3	1.4		$\mathbf{A}_{2}^{\frac{1}{2}}$
231	0.5	2.1	0.7	0.5	M^{+} - 4 PhCO ₂ H - 2 (PhCO) ₂ O or
					$C^+ - (PhCO)_2O - PhCO_2H$
227	0.4	1.3	0.6	0.4	(PhCO), ŌH Î
135 ^b	0.4	0.3	0.6		A-7
122	61.8	83.4	54.1	65.9	PhCO ₂ H†
107	1.3	2.7	1.7	1.0	$C^+ - H_2 - (PhCO)_2O - 2PhCO_2H$
106	19.1	56.5	21.7	15.9	C ₆ H ₆ CO ⁺
105	100	100	100	100	C ₆ H ₅ CO ⁺
78	7.7	15.3	9.9	7.4	$C_6^{\dagger}H_6^{\dagger}$
77	76.8	95.8	89.1	77.4	C ₆ H [±] ;
51	64.5	33.4	18.2	22.1	C ₄ H ⁺ ₃

^aIntensity, expressed as percent of the base peak. Assignments are assumed. b See Scheme 2. c Characteristic fragments for $(1 \rightarrow 4)$ linkage.

Scheme 2.

The comparison of the spectrum of 2 (having the 4-O- β -D-galactopyranosyl group) with that of 4 (having the 6-O- α -D-galactopyranosyl group) showed the expected high differences in the acyclic part (Δ C-1' 4.64, Δ C-3' 3.43, and Δ C-5' 2.30 p.p.m.) due to the change at the anomeric carbon. In the acyclic part, the glycosidic linkage is present at C-4 in 2 and at C-6 in 4, which results in important differences for the signals of these carbon atoms. The comparison between the spectra of 4 and 2,3,4,5,6-penta-O-benzoyl-D-glucononitrile, which have the same conformation, showed good agreement, except for the signal of C-6 (Δ 4.14 p.p.m.) which has a different substituent.

Mass spectra. — The mass spectra of the octa-O-benzoylaldobiononitriles having the $(1\rightarrow 4)$ -glycosidic linkage showed the general fragmentation pattern with opening of the glycosidic linkage. The fragmentation pattern of the cyclic part is similar to that of perbenzoylated monosaccharides²⁰, with successive losses of

benzoic acid and benzoic anhydride, and that of the acyclic part is similar to that of acyclic perbenzoylated derivatives²¹. The fragments produced by fission of the carbon atom vicinal to the glycosidic linkage are important. The molecular ion was not observed and the base peak was m/z 105. The principal fragments and their assignments are given in Table IV. The fragments of m/z 294, 269, and 135 are characteristic of the acyclic part of $(1\rightarrow 4)$ -linked disaccharide derivatives and are absent in the $(1\rightarrow 6)$ -linked compound.

In conclusion, the characteristic ¹H- and ¹³C-n.m.r., and mass spectra allow extension of the results presented herein to other benzoylated disaccharide nitriles, and even to some benzoylated oligosaccharide derivatives.

EXPERIMENTAL

General methods. — Melting points are uncorrected. The optical rotations were determined at 20° with a Perkin-Elmer 141 Polarimeter. T.l.c. was performed, on plates coated with Silica gel G (Merck, Darmstadt), with 9:1 benzene-ethyl acetate as the eluent and I₂ vapor for detection. The ¹H-n.m.r. spectra were recorded with Bruker WM 400 and WH 270 instruments for solutions in CDCl₃ or C₆D₆, with Me₄Si as internal standard. First-order coupling constants were measured from the expanded spectra (1 cm = 2 Hz) and assignments ascertained by double-resonance experiments. The ¹³C-n.m.r. spectra were recorded with the same instruments and with a Bruker 80 instrument equipped with wide-band proton-decoupling, and Me₄Si as the internal standard. The mass spectra were recorded with a Varian Mat CH7-A mass spectrometer, operated at 70 eV in the e.i. mode and coupled to a Varian Data System 166, by the insertion technique (100–230°). The peak intensities are expressed as a percentage of total ionization.

2,3,5,6,2',3',4',6'-Octa-O-benzoylcellobiononitrile (1). — Cellobiose (20 g) was dissolved in warm water (40 mL) and a methanolic solution of hydroxylamine, (prepared from 10 g of hydroxylamine hydrochloride) was slowly added at 65°. After 2 h at 65°, the mixture was evaporated, and the residual syrup dissolved in methanol and evaporated several times, and finally dried in a vacuum desiccator. Cellobiose oxime was obtained as a syrup (19.8 g, 95%). It was suspended in anhydrous pyridine (180 mL) and benzoyl chloride (180 mL) was added portionswise, keeping the temperature between 80–90° during the addition. After 24 h at room temperature, the mixture was poured into ice—water and the syrup obtained was washed until it gave a pulverized solid. Compound 1 was purified three times by precipitation from a 2-propanol solution with water, and obtained as an amorphous solid (54 g, 78%), m.p. 98–100°, $[\alpha]_D^{20}$ +31° (c 1, chloroform), t.l.c. R_F 0.60.

Anal. Calc. for C₆₈H₅₃NO₁₈: C, 69.68; H, 4.53; N, 1.20. Found: C, 69.50; H, 4.74; N, 1.47.

2,3,5,6,2',3',4',6'-Octa-O-benzoyllactobiononitrile (2). — The same procedure described for compound 1 was applied to lactose and gave compound 2 as an amorphous solid (59.7 g, 87%), m.p. 98–100°, $[\alpha]_D^{20}$ +56° (c 1, chloroform), t.l.c. R_F 0.61.

Anal. Calc. for $C_{68}H_{53}NO_{18}$: C, 69.68; H, 4.53; N, 1.20. Found: C, 69.82; H, 4.70; N, 1.10.

2,3,5,6,2',3',4',6'-Octa-O-benzoylmaltobiononitrile (3). — The same procedure described for compound 1 was applied to maltose and gave compound 3 as an amorphous solid (49.24 g, 72%), m.p. 90–92°, $[\alpha]_{\rm D}^{20}$ +97.7° (c 1, chloroform), t.l.c. $R_{\rm F}$ 0.55.

Anal. Calc. for $C_{68}H_{53}NO_{18}$: C, 69.68; H, 4.53; N, 1.20. Found: C, 69.50; H, 4.53; N, 1.13.

2,3,4,5,2',3',4',6'-Octa-O-benzoylmelibiononitrile (4). — Benzoylation of melibiose oxime^{7,22} (8.5 g) by the same procedure described for compound 1 gave compound 4 as an amorphous solid (24.2 g, 86.8%), m.p. 96–97°, $[\alpha]_D^{20}$ +91.3° (c 0.6, chloroform), t.l.c. R_F 0.58.

Anal. Calc. for $C_{68}H_{53}NO_{18}$: C, 69.68; H, 4.53; N, 1.20. Found: C, 69.63; H, 4.73; N, 1.25.

ACKNOWLEDGMENTS

The authors thank the Consejo Nacional de Investigaciones Científicas y Técnicas for a fellowship (N. B. D'A) and for partial financial support. They are grateful to Dr. A. M. Schüller (Universität Hamburg, West Germany) for recording the ¹H- and ¹³C-n.m.r. spectra of compounds 1, 3, and 4, and to Prof. Dr. M. Fontanille and Dr. D. Adès (Université de Paris-Nord, France) for the ¹³C-n.m.r. spectra of compounds 1 and 2. They are indebted to UMYMFOR (CONICET-FCEyN UBA) for the microanalyses and mass spectra.

REFERENCES

- 1 R. KUHN AND W. KIRSCHENLOHR, Justus Liebigs Ann. Chem., 600 (1956) 135-143.
- 2 M. E. GELPI, J. O. DEFERRARI, AND R. A. CADENAS, J. Org. Chem., 30 (1965) 4064-4066.
- 3 M. E. GELPI, J. O. DEFERRARI, AND R. A. CADENAS, Carbohydr. Res., 17 (1971) 478-479.
- 4 G. ZEMPLÉN, Ber. Disch. Chem. Ges., 59 (1926) 1254-1266.
- 5 M. GAKHOKIDZE, Zh. Obshch. Khim., 11 (1941) 117-126; Chem. Abstr., 35 (1941) 5467.
- 6 M. GAKHOKIDZE, Zh. Obshch. Khim., 16 (1946) 1923-1932; Chem. Abstr., 41 (1947) 6210.
- 7 J. O. DEFERRARI, B. N. ZUAZO, AND M. E. GELPI, Carbohydr. Res., 30 (1973) 313-318.
- 8 R. D. GARCÍA LASTRES, I. M. E. THIEL, AND A. M. SCHÜLLER, An. Asoc. Quím. Argent., 72 (1984) 247-253.
- 9 I. M. E. THIEL, An. Asoc. Quím. Argent., 70 (1982) 369-374.
- I. M. VAZQUEZ, N. B. D'ACCORSO, I. M. E. THIEL, AND A. M. SCHÜLLER, An. Asoc. Quim. Argent., 72 (1984) 583–589.
- 11 S. J. ANGYAL, R. LE FUR. AND D. GAGNAIRE, Carbohydr. Res., 23 (1972) 121-134.
- 12 N. B. D'Accorso, I. M. E. Thiel, and M. Schüller, Carbohydr. Res., 124 (1983) 177-184.
- 13 N. B. D'ACCORSO, I. M. VAZQUEZ, AND I. M. E. THIEL, Carbohydr. Res., 156 (1986) 207-213.
- 14 E. Petráková and J. Schraml, Coll. Czech. Chem. Commun., 48 (1983) 877-888.

- 15 N. B. D'ACCORSO, B. N. ZUAZO, AND I. M. E. THIEL, An. Asoc. Quím. Argent., 70 (1982) 793-799.
- 16 N. B. D'ACCORSO AND I. M. E. THIEL, Carbohydr. Res., 172 (1988) 156-159.
- 17 M. R. VIGNON AND P. J. A. VOTTERO, Tetrahedron Lett., (1976) 2445-2448.
- 18 L. SZILÁGYI, Carbohydr. Res., 118 (1983) 269-275.
- 19 P. KOVÁC, E. A. SOKOLOSKI, AND C. P. J. GLAUDEMANS, Carbohydr. Res., 128 (1984) 101-109.
- 20 N. B. D'ACCORSO AND I. M. E. THIEL, Carbohydr. Res., 129 (1984) 43-53.
- 21 N. B. D'ACCORSO AND I. M. E. THIEL, Carbohydr. Res., 117 (1983) 55-68.
- 22 G. ZEMPLÉN, Ber. Dtsch. Chem. Ges., 60 (1927) 923-930.